Des physiciens, ingénieurs et techniciens de l'Irfu mettent au point la prochaine génération de détecteurs de traces de type Micromegas. Les futures expériences de Compass au Cern et de Clas12 au Jefferson Lab, apportent de nouvelles contraintes de fonctionnement dont certaines sont telles que les détecteurs actuels ne peuvent les supporter tout en gardant leurs performances. Des tests de détecteurs comportant de nouvelles caractéristiques ont été réalisés sous faisceau au Cern. Les deux objectifs de ces tests ont été atteints : d'une part une réduction des taux de décharges, facteur limitant pour les expériences à haut flux comme Compass et d'autre part la vérification du bon fonctionnement dans des champs magnétiques intenses, nécessité pour les détecteurs gazeux du futur spectromètre Clas12. Plus généralement le développement de la technologie Micromegas est partie intégrante de la stratégie de l'Irfu avec la création récente d'un atelier de fabrication de ces détecteurs.
Des simulations numériques ‘haute résolution’ réalisées par des chercheurs du Service d'Astrophysique du CEA-Irfu/AIM viennent de révéler que la plus célèbre collision de galaxies, la collision des Antennes, produit beaucoup plus d'étoiles que ne le laissaient penser les observations. Lors d'une rencontre entre deux galaxies, la compression du gaz entraine l'allumage de nouvelles étoiles. Jusqu'ici, il semblait que ces nouvelles étoiles n'apparaissaient que dans les régions de forte densité, principalement vers le coeur de la collision. La reproduction sur ordinateur de la collision, avec une résolution permettant pour la première fois de distinguer les plus petits nuages de gaz, montre au contraire que la flambée d'étoiles se répartit beaucoup plus uniformément à l'intérieur d'une myriade de super-amas d'étoiles dispersés à travers les disques des galaxies. Ce résultat important permet de mieux comprendre pourquoi dans certaines collisions près de 100 à 1000 étoiles par an peuvent apparaitre en même temps. Ces travaux sont publiés dans la revue Astrophysical Journal Letters.
Des chercheurs du Laboratoire d'Étude des Phénomènes Cosmiques de Haute Énergie et des experts en simulations numériques du groupe COAST, ont réalisé le couplage entre un code hydrodynamique 3D et un modèle d'accélération de particules, permettant pour la première fois d'étudier de façon réaliste les signatures morphologiques des protons accélérés par l'onde de choc d'un reste de supernova, en fonction de l'efficacité du mécanisme d'accélération, et en prenant en compte des instabilités qui affectent la zone choquée.
L’imagerie par résonance magnétique à haut champ (≥ 7 teslas) apparaît comme une des voies les plus prometteuses dans le dépistage précoce des pathologies neurologiques. Au-delà des savoir-faire industriels en matière d’IRM, cette imagerie se heurte à des difficultés techniques nouvelles. L’équipe du CEA (Irfu et I2BM) du projet Iseult vient d’en franchir une. Il s’agit d’assurer une excitation homogène des noyaux atomiques grâce à la transmission parallèle. Celle-ci permet l’homogénéisation de l’excitation des spins de protons des tissus biologiques pour aboutir à des images de cerveaux humains sans zone d’ombre ni perte de contraste. Les images in vivo récemment obtenues à 7 teslas en transmission parallèle, constituent une première en Europe et consacre une collaboration réussie entre les deux instituts. Ces travaux ont aussi permis le dépôt de plusieurs brevets. Bien qu’une quinzaine de scanners IRM à 7 teslas soient installés dans le monde, seuls 5 à 6 centres de recherche sont capables de mobiliser en un même lieu toutes les compétences réunies dans la collaboration DSM-DSV pour développer toutes les étapes nécessaires à la transmission parallèle, à savoir : la conception des antennes (Irfu/SACM) et leur électronique (I2BM/NeuroSpin), la simulation électromagnétique du couplage antenne-patient (Irfu/SACM), le développement des séquences IRM d’acquisition des cartes de champ magnétique (I2BM/NeuroSpin), l’analyse, le contrôle de la puissance déposée dans les tissus, et la mise au point des procédés de transmission parallèle (I2BM/NeuroSpin), sans oublier le bureau d’études (Irfu/SIS) et la mise en œuvre des équipements de mesure spécifiques (Irfu/Sédi).
Le laboratoire d'électronique spatiale (LEDES) du Service d'Astrophysique (CEA-Irfu) vient de signer un accord de partenariat avec la société industrielle Skylab Industrie pour fabriquer et distribuer des équipements spatiaux intégrant le micro-logiciel baptisé "SpacewireCEA" initialement développé au CEA pour la caméra infrarouge PACS du satellite Herschel. Ce logiciel intégré à l'electronique de bord permet le transfert à haut débit des données d'observations des instruments spatiaux. Il permet d'atteindre un débit maximal de données de 400 Megabits par seconde [1], tout en respectant le standard international "Spacewire", un ensemble de contraintes techniques très exigeantes établies par l'Agence spatiale européenne (ESA) afin d'assurer la compatibilité entre les différents équipements satellites.
Après presque une année de prises de données en collisions proton-proton, le LHC du CERN a commencé l’injection d’ions de plomb début novembre et a très vite délivré des collisions dès le 8 novembre. L’énergie dans le centre de masse nucléon-nucléon est de 2,76 TeV, environ 10 fois supérieure à celle atteinte précédement au RHIC de Brookhaven (USA). Les premiers résultats d'ALICE ne se sont pas fait attendre.
Du 22 au 28 juillet, s’est déroulée au Palais des congrès de Paris la 35e conférence internationale de physique des hautes énergies (ICHEP), l’occasion pour les équipes du LHC de montrer leurs premiers résultats de physique. L’Irfu est engagé dans trois des quatre grandes collaborations qui ont installé leurs détecteurs aux points de collisions de l’anneau : Alice, Atlas et CMS. Nos équipes ont contribué tout particulièrement à quelques analyses fondamentales pour la maîtrise des détecteurs dont les performances sont plus qu’à la hauteur des attentes.
Du 22 au 28 juillet, s’est déroulée au Palais des congrès de Paris la 35e conférence internationale de physique des hautes énergies (ICHEP), l’occasion pour les équipes du LHC de montrer leurs premiers résultats de physique. L’Irfu est engagé dans trois des quatre grandes collaborations qui ont installé leurs détecteurs aux points de collisions de l’anneau : Alice, Atlas et CMS. Nos équipes ont contribué tout particulièrement à quelques analyses fondamentales pour la maîtrise des détecteurs dont les performances sont plus qu’à la hauteur des attentes.
Des simulations numériques réalisées par une équipe d'astrophysiciens du laboratoire AIM-CEA Saclay (Université Paris Diderot, CEA, CNRS) et de l'observatoire de Nice montrent, à partir des observations effectuées avec la mission Cassini, comment certaines petites lunes de Saturne se forment encore actuellement à partir de la matière des anneaux de Saturne, plusieurs milliards d'années après la fin de la formation des planètes et satellites du Système solaire. Ces travaux sont publiés dans la revue Nature du 10 juin 2010 .
Du 22 au 28 juillet, s’est déroulée au Palais des congrès de Paris la 35e conférence internationale de physique des hautes énergies (ICHEP), l’occasion pour les équipes du LHC de montrer leurs premiers résultats de physique. L’Irfu est engagé dans trois des quatre grandes collaborations qui ont installé leurs détecteurs aux points de collisions de l’anneau : Alice, Atlas et CMS. Nos équipes ont contribué tout particulièrement à quelques analyses fondamentales pour la maîtrise des détecteurs dont les performances sont plus qu’à la hauteur des attentes.
Les physiciens travaillant sur les expériences CDF et D0 auprès de l'accélérateur Tevatron de Fermilab (Chicago), dont ceux de l’IN2P3/CNRS et de l’Irfu/CEA, ont annoncé leurs résultats les plus récents le 26 juillet lors de la conférence internationale en physique des hautes énergies ICHEP 2010 à Paris. Leurs mesures contraignent davantage la fraction du domaine de masse du boson de Higgs qui reste autorisée dans le modèle standard de la physique des particules. CDF et D0 excluent ainsi un boson de Higgs ayant une masse entre 158 et 175 GeV/c2. De plus en plus d’indices pointent vers une masse faible pour ce fameux boson : une réponse à cette énigme dans les deux ans à venir ?
Dans le cadre de l'expérience DZero(1) réalisée auprès de l'accélérateur Tevatron de Fermilab(2) (Chicago) et à laquelle participent le CNRS/IN2P3 et le CEA/Irfu, les physiciens ont mesuré une violation significative de la symétrie matière-antimatière dans le comportement des particules contenant des quarks b, appelées "mésons B" (ou "mésons beaux")(3), et ceci au-delà des prédictions du modèle standard, la théorie actuelle de la physique des particules. Ce résultat a été soumis pour publication dans la revue Physics Review D.
Double Chooz est une expérience installée auprès du réacteur nucléaire de Chooz, dans les Ardennes françaises, dont le but est d'étudier les oscillations de neutrinos. Après plus de deux ans de construction du détecteur et son remplissage des 237 m3 d'huiles et de liquides scintillant, le premier détecteur de l'expérience Double Chooz est en prise de données depuis le 22 décembre 2010. Après une phase de réglage début 2011 la collaboration partira à la chasses aux neutrinos, pour une première moisson espérée mi-2011.
Le groupe de l'IRFU, impliquant le SPP (à l'initiative de l'expérience), le SPhN, le SIS, le Sedi, et le Lenac, a joué un rôle majeur dans le pilotage du projet et a contribué de façon significative à la conception, la réalisation, et l'intégration du détecteur:
Après avoir joué un rôle majeur dans la conception des détecteurs, l’IRFU a eu en charge la coordination technique de l’ensemble du projet au sein de la collaboration (140 physiciens & ingénieurs dans 8 pays et 35 instituts). Il a assuré également par la présence permanente d’un ingénieur sur le site, la coordination du montage des différents éléments du détecteur. Les dossiers de sécurité nécessaires à une installation de ce type (ICPE) ont été élaborés et suivi en lien avec l’ASN.
Des éléments clefs du détecteur ont été conçus par l’IRFU :
De plus, une contribution importante de l’IRFU a été apportée autour des liquides,
Par ailleurs, l’IRFU a conçu et réalisé la salle blanche du laboratoire et a été un acteur majeur de son maintien à un niveau de propreté satisfaisant tout au long du montage.
Enfin, l’IRFU a assuré le relevé géodésique du détecteur.
contacts:
Thierry Lasserre
Christian Veyssière
Le 14 avril, Thierry Lasserre a reçu la médaille de bronze du CNRS de la main de nouveau directeur de l'In2p3, Jacques Martino. Depuis 1954, le CNRS attribue chaque année trois médailles à des chercheurs de renom ou à de jeunes scientifiques prometteurs. Celle de bronze récompense le premier travail d'un chercheur, qui fait de lui un spécialiste prometteur dans son domaine. Celui de Thierry Lasserre concerne la particule de matière la plus abondante de l'Univers : le neutrino.
Une société vosgienne, NEOTEC, a recu le prix de la « réalisation exemplaire » 2009 pour la réalisation de cuves très spéciales, au salon international Midest, en présence du Ministre de l'industrie, Monsieur Christian Estrosi. La réalisation primée fait partie d'un élément important de l'expérience Double-Chooz qui mesurera, avant la fin de cette année, des neutrinos émis par le réacteur de la centrale nucléaire de Chooz dans les Ardennes.
Spécialisée depuis 1922 dans la vente et la transformation des matières plastiques l'entreprise NOVAPLEST-NEOTEC PLASTIQUE a réalisé pour le CEA quatre enceintes transparentes étanches en Plexiglas issu d'une fabrication spéciale, destinées à un projet de recherche de détection de neutrinos de réacteurs. Cette réalisation a été suivie par l'IRFU qui en a réalisé toute l'étude au sein de son service d'Ingénierie des systèmes (SIS) et du SPP (service de Physique des Particules). L'intégration a été réalisée par une équipe regroupant des personnes du SIS, du Sedi (Le service d'Electronique des Détecteurs et d'Informatique), et du SPP.
La mission spatiale étasunienne KEPLER, lancée en Mars 2009 pour la recherche d'exoplanètes, vient de livrer ses premiers résultats sur les vibrations d'étoiles. Plusieurs équipes internationales de chercheurs, incluant des membres du Service d'Astrophysique (CEA-Irfu) ont ainsi montré grâce à ces premières données que les tremblements stellaires permettaient non seulement de sonder l'intérieur des étoiles mais aussi de determiner leur âge et de savoir si les étoiles appartenaient ou non à des formations en amas. Ces résultats font l'objet de quatre articles publiés dans un numero spécial de la revue Astrophysical Journal Letters consacré à la mission Kepler
Du 22 au 28 juillet, s’est déroulée au Palais des congrès de Paris la 35e conférence internationale de physique des hautes énergies (ICHEP), l’occasion pour les équipes du LHC de montrer leurs premiers résultats de physique. L’Irfu est engagé dans trois des quatre grandes collaborations qui ont installé leurs détecteurs aux points de collisions de l’anneau : Alice, Atlas et CMS. Nos équipes ont contribué tout particulièrement à quelques analyses fondamentales pour la maîtrise des détecteurs dont les performances sont plus qu’à la hauteur des attentes.
Le LHC s'apprête à démarrer pour une première période de prise de données de deux ans qui va produire un flux et une quantité de données parmi les plus importants que l'homme ait jamais eu à traiter. Lors de récents tests en situation réelle, la grille de recherche d'Île-de-France (Grif) a répondu aux performances requises en permettant aux physiciens d'accéder aux données reconstruites seulement quatre heures après qu'elles aient été enregistrées au Cern. En 2010, la quantité de données à traiter sera cent fois plus importante. Les équipes de l'Irfu ont montré après ce premier succès qu'elles étaient prêtes pour relever ce défi.
Une équipe internationale d’astronomes, comprenant plusieurs chercheurs français, vient de mesurer l’éloignement exact de cinq galaxies très lointaines, grâce à l'observatoire spatial Herschel de l'ESA et à des observations au sol, impliquant notamment l’interféromètre de l’Institut de radioastronomie millimétrique1 . Les chercheurs ont ainsi démontré que la lumière de ces galaxies avait dû voyager pendant environ dix milliards d'années avant de nous atteindre. Pour parvenir à ces résultats, ils ont tout d’abord mis au point une nouvelle méthode qui utilise, pour la première fois dans le domaine submillimétrique2 , un phénomène appelé « lentille gravitationnelle », sorte de loupe cosmique que détecte Herschel. Difficiles à observer jusqu’à aujourd’hui, ces galaxies lointaines en cours d’évolution rapide constituent l’une des clés pour mieux comprendre l’histoire des galaxies dans notre Univers. Ces résultats sont publiés dans la revue Science du 5 novembre 2010.
Le laboratoire d'électronique spatiale (LEDES) du Service d'Astrophysique (CEA-Irfu) vient de signer un accord de partenariat avec la société industrielle Skylab Industrie pour fabriquer et distribuer des équipements spatiaux intégrant le micro-logiciel baptisé "SpacewireCEA" initialement développé au CEA pour la caméra infrarouge PACS du satellite Herschel. Ce logiciel intégré à l'electronique de bord permet le transfert à haut débit des données d'observations des instruments spatiaux. Il permet d'atteindre un débit maximal de données de 400 Megabits par seconde [1], tout en respectant le standard international "Spacewire", un ensemble de contraintes techniques très exigeantes établies par l'Agence spatiale européenne (ESA) afin d'assurer la compatibilité entre les différents équipements satellites.
Le trou noir central de la Galaxie, aujourd'hui étonnamment calme, a connu il y a plusieurs centaines d'années un violent regain d'activité. C'est en étudiant l'émission à haute énergie des nuages moléculaires situés dans les régions centrales de la Galaxie, qu'une équipe internationale dirigée par des astrophysiciens du laboratoire APC et incluant des chercheurs du Service d'Astrophysique du CEA-Irfu est arrivée à cette conclusion. Les chercheurs ont découvert des variations étonnantes, dont certaines semblent se propager par un effet d'optique à une vitesse supérieure à la vitesse de la lumière. Elles révèlent une éruption géante amorcée il y a environ 400 ans. Le puissant sursaut est visible aujourd'hui après sa réflexion sur des nuages moléculaires qui jouent le rôle de miroirs célestes. L'histoire récente ainsi retracée montre que le trou noir du centre galactique n'est pas aussi éloigné de la famille des trous noirs supermassifs des noyaux actifs de galaxies. Ces travaux, basés sur deux programmes à long terme sur les satellites XMM-Newton et Integral, font l'objet de deux publications complémentaires dans la revue The Astrophysical Journal.
Le Service d'Astrophysique du CEA-Irfu, responsable scientifique et technique de l'imageur MIRIM (pour Mid InfaRred IMager ou Imageur pour l'infrarouge Moyen) du spectro-imageur MIRI, un des instruments majeurs du prochain télescope spatial James Webb (JWST), vient de livrer le modèle final de l'imageur au laboratoire Rutherford à Appleton en Angleterre, chargé des derniers tests avant la livraison pour intégration sur le JWST début 2011. Le JWST, une mission conjointe des agences spatiales étatsunienne (NASA), canadienne (CSA) et européenne (ESA), est un satellite de plus de six tonnes comportant un télescope de 6,5 mètres de diamètre dont le lancement est prévue pour mi 2014 par une fusée Ariane 5.
La caméra MIRIM est un instrument clef pour l'objectif principal du JWST qui consiste à explorer l'Univers tel qu'il était il y a plus de 13 milliards d'années, au moment où se sont formés les tout premiers objets lumineux. MIRIM devrait permettre des découvertes majeures dans l'étude de la formation des galaxies et des étoiles et également dans le domaine de la recherche de planètes lointaines grâce à un dispositif très novateur, un coronographe à masque de phase, qui permet "d'éteindre" la lumière d'une étoile pour voir plus facilement une planète proche de l'étoile.
Voir l'animation de "l'extinction" d'une étoile dans le coronographe
Des physiciens, ingénieurs et techniciens de l'Irfu mettent au point la prochaine génération de détecteurs de traces de type Micromegas. Les futures expériences de Compass au Cern et de Clas12 au Jefferson Lab, apportent de nouvelles contraintes de fonctionnement dont certaines sont telles que les détecteurs actuels ne peuvent les supporter tout en gardant leurs performances. Des tests de détecteurs comportant de nouvelles caractéristiques ont été réalisés sous faisceau au Cern. Les deux objectifs de ces tests ont été atteints : d'une part une réduction des taux de décharges, facteur limitant pour les expériences à haut flux comme Compass et d'autre part la vérification du bon fonctionnement dans des champs magnétiques intenses, nécessité pour les détecteurs gazeux du futur spectromètre Clas12. Plus généralement le développement de la technologie Micromegas est partie intégrante de la stratégie de l'Irfu avec la création récente d'un atelier de fabrication de ces détecteurs.
Une équipe internationale menée par des astrophysiciens de l'Observatoire de Lyon (CRAL, CNRS/INSU, Université Lyon 1) et du laboratoire AIM (CEA-Irfu,CNRS,Université Paris 7) vient de lever le voile sur l'origine de l'anneau de gaz géant du Lion. Les astrophysiciens ont pu détecter une contrepartie optique à ce nuage qui correspond à des étoiles en formation avec le télescope Canada-France-Hawaii (INSU-CNRS, CNRC, U. Hawaii). Par le biais de simulations numériques réalisées sur les supercalculateurs du CEA, les chercheurs ont ensuite proposé un scénario de formation de cet anneau. Il s'agit d'une violente collision entre deux galaxies. Ils ont pu identifier les coupables et dater l'impact. Cette découverte permet donc d'affirmer que ce gaz n'est pas primordial, mais bien d'origine galactique. Ces travaux sont publiés dans la revue Astrophysical Journal Letters.
La collaboration SNLS (Supernova Legacy Survey, au télescope Canada-France-Hawaï) vient de publier une nouvelle méthode permettant de déterminer la vitesse de récession des supernovas, ces « chandelles standard » qui apparaissent dans l'Univers tout au long de son histoire. La nouveauté est de pouvoir étudier ces explosions cataclysmiques sans avoir recours à l'usage de la spectroscopie, trop gourmande en temps d'observation même sur les plus grands télescopes de la planète. Près de la moitié du millier de supernovas qui ont été observées par l'expérience SNLS depuis 2003 grâce à la caméra Mégacam auraient du être abandonnées sans cette nouvelle analyse. Pour les projets futurs qui visent le million de supernovas, ce type de méthode sera absolument indispensable.
La méthode développée vient d'être publiée dans Astronomy & Astrophysics
Figure 1 : Coupole abritant le télescope de 3,60 m de diamètre de l'observatoire du Canada-France-Hawaï, situé sur le Mauna Kea à Hawaï.
L’instrument MUSETT1 a détecté ses premiers noyaux lourds lors d’une phase de tests qui a eu lieu au début du mois d’avril 2010 auprès de l’accélérateur du GANIL2 à Caen. MUSETT a été construit dans le but d’identifier les éléments très lourd, les transfermiens, c'est à dire les éléments situés au-delà du fermium (Z=100). Les physiciens nucléaires s’intéressent à ces états extrêmes de la matière pour tester les modèles théoriques décrivant le noyau. Les premiers résultats de MUSETT sont très satisfaisants, démontrant une très bonne identification des isotopes produits grâce à une méthode originale dite de corrélation génétique. Celle–ci permet d’étiqueter un noyau grâce à la détection de sa décroissance. MUSETT préfigure la détection du futur Super Séparateur Spectromètre S3 dédié aux faisceaux hyper-intenses de SPIRAL23, permettant l’exploration des noyaux les plus lourds.
Le satellite Planck vient de découvrir un superamas de galaxies grâce à son empreinte sur le rayonnement fossile, témoin des premiers instants de l’Univers. Il s’agit d’une première pour le satellite, qui a également révélé, avec une extrême précision, de nouveaux amas de galaxies.
Ces objets, qui abritent des centaines voire des milliers de galaxies, sont les plus grandes structures connues de l’Univers. Grâce à ces données, les scientifiques espèrent mieux comprendre comment la matière noire et la matière visible se rassemblent sous la forme de telles structures.
Après son lancement le 14 mai 2009, le satellite Planck [1] observe en continu la voûte céleste et cartographie l'ensemble du ciel depuis le 13 août, pour obtenir la première image à très haute résolution de l'aube de l'Univers. Le satellite Planck vient de terminer son premier tour de ciel. Les premières images révèlent des détails insoupçonnés sur l'émission de gaz et de poussières dans notre propre galaxie. Des scientifiques du CEA-Irfu, au sein d'une large collaboration internationale, travaillent actuellement sur l'extraction et l'exploitation des catalogues d'objets détectés par Planck. Ces catalogues intermédiaires sont indispensables pour comprendre et soustraire les émissions parasites en avant plan de la lumière de fond de l'univers, trace fossile de ses premiers âges. Ils permettent également de mieux comprendre la formation des plus grandes structures de l'univers, les amas de galaxies. Les premiers catalogues devraient être publiés en janvier 2011. En revanche, les publications scientifiques définitives sur la première lumière de l'Univers ne devraient intervenir que vers la fin 2012.
La source d'ions légers (protons et deutons) du projet SPIRAL2 a délivré mi mars 2010 son premier faisceau d'ions hydrogène. Ce résultat a été obtenu sur l'installation de test des lignes basse énergie à Saclay et marque son début officiel d'activité. Quinze mètres de lignes de l'accélérateur seront ainsi assemblés puis testés dans une casemate par l'Irfu avant d'être installés à Ganil en 2011.
Le projet CHyMENE (Cible d'Hydrogène Mince pour l'Etude des Noyaux Exotiques) a le but ambitieux de produire une cible mince d'hydrogène pur sans conteneur adaptée aux expériences utilisant des faisceaux d'ions lourds de basse énergie prévus avec SPIRAL2.
Une équipe de l'Irfu (SPhN et SACM) et de l'Inac/SBT utilisant des techniques cryogéniques vient de produire avec succès un ruban d'hydrogène solide de 100 µm d'épaisseur. Cette cible sera bientôt testée sous faisceau. Une première mondiale.
Image du début: Ruban d'hydrogène solide H2 extrudé (largeur 10 mm, épaisseur 100 µm), vu au travers du hublot de la chambre à vide (Photo V. Lapoux).
Fin janvier 2010, au Japon, les détecteurs du projet Tokai to Superkamiokande (T2K, [ti:tu:kei]), développés à Saclay, ont observé leurs premiers neutrinos. Ces détecteurs sont constitués de deux grandes chambres permettant de reconstruire les traces de particules chargées et caractérisent le faisceau de neutrinos. Dans cette expérience, les neutrinos sont créés par un faisceau de protons issu de l'accélérateur de Tokai. Ces mêmes neutrinos sont mesurés 300 km plus loin, à Kamioka, dans une grande cuve d'eau de 40 m de diamètre et de hauteur, qui a précédemment servi à étudier les neutrinos provenant de l'interaction du rayonnement cosmique dans l'atmosphère et à prouver définitivement le phénomène d'oscillation (prix Nobel à Masatoshi Koshiba en 2002). Depuis, une première interaction de neutrinos en provenance de Tokai a été observée dès la fin février dans le détecteur de Kamioka, ce qui marque le début d'une phase très excitante sur la physique des neutrinos.
Le trou noir central de la Galaxie, aujourd'hui étonnamment calme, a connu il y a plusieurs centaines d'années un violent regain d'activité. C'est en étudiant l'émission à haute énergie des nuages moléculaires situés dans les régions centrales de la Galaxie, qu'une équipe internationale dirigée par des astrophysiciens du laboratoire APC et incluant des chercheurs du Service d'Astrophysique du CEA-Irfu est arrivée à cette conclusion. Les chercheurs ont découvert des variations étonnantes, dont certaines semblent se propager par un effet d'optique à une vitesse supérieure à la vitesse de la lumière. Elles révèlent une éruption géante amorcée il y a environ 400 ans. Le puissant sursaut est visible aujourd'hui après sa réflexion sur des nuages moléculaires qui jouent le rôle de miroirs célestes. L'histoire récente ainsi retracée montre que le trou noir du centre galactique n'est pas aussi éloigné de la famille des trous noirs supermassifs des noyaux actifs de galaxies. Ces travaux, basés sur deux programmes à long terme sur les satellites XMM-Newton et Integral, font l'objet de deux publications complémentaires dans la revue The Astrophysical Journal.
L’instrument MUSETT1 a détecté ses premiers noyaux lourds lors d’une phase de tests qui a eu lieu au début du mois d’avril 2010 auprès de l’accélérateur du GANIL2 à Caen. MUSETT a été construit dans le but d’identifier les éléments très lourd, les transfermiens, c'est à dire les éléments situés au-delà du fermium (Z=100). Les physiciens nucléaires s’intéressent à ces états extrêmes de la matière pour tester les modèles théoriques décrivant le noyau. Les premiers résultats de MUSETT sont très satisfaisants, démontrant une très bonne identification des isotopes produits grâce à une méthode originale dite de corrélation génétique. Celle–ci permet d’étiqueter un noyau grâce à la détection de sa décroissance. MUSETT préfigure la détection du futur Super Séparateur Spectromètre S3 dédié aux faisceaux hyper-intenses de SPIRAL23, permettant l’exploration des noyaux les plus lourds.
Du 22 au 28 juillet, s’est déroulée au Palais des congrès de Paris la 35e conférence internationale de physique des hautes énergies (ICHEP), l’occasion pour les équipes du LHC de montrer leurs premiers résultats de physique. L’Irfu est engagé dans trois des quatre grandes collaborations qui ont installé leurs détecteurs aux points de collisions de l’anneau : Alice, Atlas et CMS. Nos équipes ont contribué tout particulièrement à quelques analyses fondamentales pour la maîtrise des détecteurs dont les performances sont plus qu’à la hauteur des attentes.
La collaboration SNLS (Supernova Legacy Survey, au télescope Canada-France-Hawaï) vient de publier une nouvelle méthode permettant de déterminer la vitesse de récession des supernovas, ces « chandelles standard » qui apparaissent dans l'Univers tout au long de son histoire. La nouveauté est de pouvoir étudier ces explosions cataclysmiques sans avoir recours à l'usage de la spectroscopie, trop gourmande en temps d'observation même sur les plus grands télescopes de la planète. Près de la moitié du millier de supernovas qui ont été observées par l'expérience SNLS depuis 2003 grâce à la caméra Mégacam auraient du être abandonnées sans cette nouvelle analyse. Pour les projets futurs qui visent le million de supernovas, ce type de méthode sera absolument indispensable.
La méthode développée vient d'être publiée dans Astronomy & Astrophysics
Figure 1 : Coupole abritant le télescope de 3,60 m de diamètre de l'observatoire du Canada-France-Hawaï, situé sur le Mauna Kea à Hawaï.